11 \?. ".‘ %

. N
i34 ot

1001 8q W

3 '_'_:Ig (

ALLIED
TESTING

Advanced SOR Testing

Addressing the challenges in testing advanced
execution platforms

By losif Itkin, Senior NFT Analyst; Alexey Zverev, Senior R&D Manager; Olga
Buyanova, QA Analyst; Dasha Klyachko, Managing Director

2009

Table of Contents

INTRODUCGTION ...cutteteeteeteesieesteesteesteesttesitesatesatesatesatesateesteenteenseesseesbeesseesseenseeseesseesaeesaeesasesasesntes aesssesasesasesnses 3
1. SOR TESTING CHALLENGESotiiitieiieeeiteenitt ettt ettt e site e st e s sate e sabeesabeesabeeesabeesabeesabaesnbeeesaseesaseeenses 5
1.1 ClIENt OrdEr FIOW ..ttt st st sttt st st e b e bt e s b e sbeesaeenae s 5
1.2) Lo Lol D - - [P O PRSPPSO PP PO POPPRRON 5
1.3 EXChange SiMUIGtION ..cciiieeeee e e e e e e e et e e e e s s ababeeeeeeeeesanrennes 5
1.4 DiIVEISITY Of IMAIKETS ..ceii i e e e e e e st e e e e e e s e s abtaeaeeaeeesnsstaeeeeeeeesnsreenes 5
1.5 IMpact of REFEreNCe Marketsuueei i st e st e e s rate e e e sraeeeens 6
1.6 FX FEEAS SIMUIGLION ...ttt et sttt e st e st esbe e e bteesateesabeesnbeesareenns 6
1.7 The Universe of TeStING SCENAIIOSuuiiiiiiieeccieee et e eetee et e e e et e e e stre e e ssntaeeesbtaeessnbaeeesnssneaesses 6
1.8 (O TUT=IS o oY ol o [Te fo 1T oW M Te [N T L1 Y2 PSS 6
1.9 Reliance on the Adaptive Databaseceiiiiiiiiiie e e e e e e nrre e e e s 6
1.10 StOChAStiC BENAVION....ciiiiiiieecee ettt s e s e e be e e smre e sareeenee s 6
1.11 ENd-Points SYNCRIONIZAtION ..iiceiiiiiiiiiei ittt e e s e e e st e e e e snb e e e snbeeeesnbeeeennsees 6
1.12 Precision of Latency MeEasSUIrEMENTS......cccuiiiiiiieeeeiiteeeeiiteeeerteeeesreeeesbeeeessabeeeessbeeesssteeesssseeessnses 7
1.13 Real-Time Data VOIUMESc..coiiieiieiiieieerite sttt ettt sttt sttt b e e b e sneenneennees 7
1.14 Environment MainteNanCec..ciiiiiiiiiiiiiiiiitte ettt e s 7
2. ADVANCED TESTING TOOLS ... ettt ettt ettt ettt s bt sh e sat e st st st st et e et e et e et e e beesbeenbeenbeenbeenneas 8
2.1 Test HAarness REQUITEMENTSuuueieiiiiiiiieiiitieteieteeereeereeeeeeeeeeeeeeeeeeeeeeeeeeerereereeeeereeeeeeeaeseeeeeeeeeeeeeaeeeeaees 8
2.2 el - [T= LY 10 0 [V - o PRSPt 9
3. ADVANCED TESTING STRATEGIESteitiriieriieiieete ettt ettt ettt et s s s snesneeneeneenneens 11
3.1 =Y ed (Y (o] o T =T}] = S T U TP 11
3.2 2 ol = o T I =T o o = S 13
3.3 Performance and Latency MEASUIEMENTS........ccccuiieieiiieeeeiieeeesiteeeeeree e e ereeeesreeeeeebaeeeenreeeeennneas 14
3.4 ST oleTa Yol | [T uToT o T IC=TS) 4 1oV =S UUUR 16
3.5 BENAVIOUIAl TOSTING . ceiii ittt et e e e e e e et e e e e e e e e s aataeeeeeeeeesasntaeeeaeeessnsrasees 18
3.6 (0] o1l =1 o1 11 AV =TSy 4 o= PSPPSR 18
4. VENDOR PROFILE: ALLIED TESTING.....coctteottetterteeteenteesteesiee st st st st et ete e e b b e beesreesbeesaeesanesaresanes 19
4.1 ADOUL US...eiie ettt ettt ettt e bt e bt e bt e b e b et b e she e nae e sanesaneea e nheesane e 19
4.2 BEST (Back-End System Testing) PIatformcoouuiiiiiieeeccee ettt e 20
4.3 (e o =Y Y= LI U1 = o) USSR 22
4.4 [T fe] g g a T T a[ol ol AN s T Y72 SRS 22

Allied Testing | Advanced SOR Testing

INTRODUCTION

Regulatory changes, fast technology improvement and the appearance of new execution venues have
added more complexity to the European equity markets. The challenges of ever increased liquidity
fragmentation in a highly competitive industry dictate that companies commit to significant investments
into advanced execution platforms. The absence of strong Quality Assurance can delay the development
and deployment of enhanced trading systems and/or have other negative impact, such as missed defects.

In the introduction part of this document, we discuss why special attention to testing of the execution
frameworks and algorithms incorporated into trading software is so important.

The first generation of Smart Order Routers (SOR) is being replaced by solutions containing sophisticated
customizable algorithms. The correctness of their work directly impacts profitability and compliance with
various regulatory requirements. It is important to emphasize that such solutions cannot remain stable for
long periods of time in the fast changing markets. Algorithms used in SOR need constant adaptation to
reflect the latest changes. It is not uncommon to see systems with release cycles shorter than two weeks,
as fierce competition dictates the necessity to shorten time-to-market. This goal cannot be achieved
without efficient quality assurance procedures in place.

For any trading system these days, high throughput and low latency are no longer “nice-to-have” features,
but rather crucial requirements. It is especially true for advanced SOR systems, since their very purpose is
to catch available liquidity. Without accurate latency measurements one cannot be confident in a system’s
ability to allow its user to stay ahead of decisions made by competition. The main throughput challenge for
modern execution platforms comes from a dramatic increase of reference market data volumes. The
systems must process this data as fast as possible to have a relevant snapshot prior to making routing
decisions. Load and stress testing must be carried out to verify that SOR will be able to withstand growing
volume spikes.

Complex execution platforms can be distributed across multiple application/server instances and
datacenters. Quite often different versions of the algorithms/software are simultaneously deployed on
different instances of the application. To satisfy requirements, advanced SOR needs to provide load
balancing, fault tolerance/high availability, and resilience to unexpected events. Monitoring and
deployment procedures should be tuned in such a way as to guarantee the fastest possible response. In
summary, a large, complex trading system means significant operational challenges. By conducting
Operational and Non-Functional Testing (NFT) in a test environment, QA can red-flag possible production
issues in advance and thus help the Support Team be prepared to resolve them quickly and efficiently.

Although comprehensive testing of the SOR systems leads to obvious benefits, it is way too often omitted
by the stakeholders. The main reason for that is that testing of such systems is a non-trivial challenge.

The first part of this paper discusses the most common issues encountered as the testing of advanced SOR
testing is being considered by the stakeholders. These quality assurance challenges can be effectively
addressed when the following three key elements are in place:

» Advanced test tools;
» Advanced testing strategies;

Allied Testing | Advanced SOR Testing

» Advanced engineering staff to apply both.

The second part of this document looks at the requirements for such test tools and testing approaches. As
the authors specializes in testing and development of complex financial applications, we have included a
short description of the relevant tools, project management processes and staff skills in the form of a Case
study, which shows a possible approach to achieving quality objectives for advanced execution platforms.

Allied Testing | Advanced SOR Testing

1. SOR TESTING CHALLENGES

1.1 Client order flow

In order to test a Smart Order Router, one needs to submit client orders into it. Even when the
normalization of input flow is in place, one still needs to cover all systems responsible for its generation:
web and thick clients, direct API, and Order Managing Systems.

Test scenarios must cover all asset classes and security types; all order sides, types, TIFs, and handling
instructions. Additionally, not just new orders, but also change-replace (amends) and order cancellations
must be tested. The latter two are applied for orders in various states, e.g. new, filled, partially filled, TLTC
(too late to cancel). The incoming order flow should comply with a certain instrument, price and size
restrictions.

In addition to positive use cases, test scenarios should also account for erroneous incoming messages as
negative test scenarios.

1.2 Static Data

Testing of trading systems heavily relies on static data: instruments, participants and prices. Ticker symbols
and market data subjects vary for different exchanges. The set of accessible instrument changes from time
to time. End-Of-Day (EOD) prices are updated daily. To be able to execute automated tests, one needs to
include appropriate symbol names into the test data. Prices used in the test scenarios should be within
appropriate limits. Therefore, one needs to constantly update the test data and be cognizant of the fact
that the data itself is rather complex.

1.3 Exchange Simulation

To test a SOR system, one needs to place it between the client order flow and the exchange simulator.
Exchange simulation is required to provide responses to child orders and amends and cancel instructions
generated by SOR. Exchange simulators should support protocols used by the SOR to access execution
venues. In addition to providing consistent response to child orders, the simulators need to send self-
consistent market data that corresponds to changes in the transactional flow.

1.4 Diversity of Markets

The test framework needs to take into account the differences between various exchanges, dark pools and
other execution venues. Each of them have their own trading times, different algorithms for
open/close/unscheduled auctions, crossing rules, and order types (market/limit, various types of pegged
orders, available TIFs).

Concurrently acting simulators should introduce different latency before response to replicate the
difference between the real systems.

The exchanges use different symbol names, and trade in different currencies. Various tick, unit and minimal
order sizes are valid depending on the exchange.

Allied Testing | Advanced SOR Testing

1.5 Impact of Reference Markets

The markets are no longer independent from each other. Observations show that a strong correlation exists
between them. MTF often uses information from the home or aggregated pan-European (North-American)
market to limit price range available for execution or the execution price determination. Exchange
simulation should take this impact into account.

1.6 FXFeeds Simulation

Due to the fact that trading ultimately involves multiple currencies, the test environment should provide
the means for accurate FX Feeds simulation. It is important to keep stock prices in various currencies
consistent with the current FX rate. The latter should not be static for realistic testing.

1.7 The Universe of Testing Scenarios

The ultimate challenge of SOR system testing lies in the limitless possible responses by the exchanges to
child orders. An order can catch available liquidity, or the liquidity might go away prior to when the order
reaches the order book; additional liquidity can become available when the order reaches the order book,
and the state of the current and reference markets can change after the order has been executed. If one
multiplies these options by the multitude of re-routing options that are possible in an advanced SOR, it
becomes apparent that it is necessary to consider a virtually countless number of test cases.

1.8 Quest for Hidden Liquidity

SOR systems perform liquidity pinging / scanning for hidden liquidity (i.e. they attempt to interact with
invisible/non-display, iceberg/reserve, and discretionary orders). One needs to carefully simulate a realistic
response from the venues to these strategies. In order to do it, QA engineers need to possess an in-depth
understanding of the dark liquidity concepts.

1.9 Reliance on the Adaptive Database

Some routing algorithms for venues priority are based on historical databases (historical statistics on
trading patterns per symbol and per venue). Some routing algorithms for venues priority are based on the
real-time adaptive database. There are also combinations of the two: some routing algorithms for market
centers priority are based on historical probability patterns and real-time adaptive opportunity patterns.

Reasonable tests scenarios should pre-fill historical databases with relevant data and provide realistic
dynamic flows to initiate real-time processing.

1.10 Stochastic Behavior

It is not uncommon to see algorithms containing a certain degree of randomness in them. From the testing
perspective it means that the system might have more than one correct predictable behavior for a given list
of inputs. Therefore, pass/fail criteria become much more complicated. Sometimes stochastic behavior is
explained by concurrency effects and the time dimension impact. That is why it may manifest even when
no random number generator is used.

1.11 End-Points Synchronization
The system might not have a single focus end-point, where all inputs or outputs are concentrated and
processed. It may be necessary to simulate several input protocols, while protocol implementation details

Allied Testing | Advanced SOR Testing

might be undocumented or hidden. The simulation might also require compatibility with different software
platforms.

It is necessary to run all interactions with the system under test from a single point to ensure that all data
fed into the system is consistent and synchronized. Incoming order flow initiation should be performed in
sync with decision start. The task can be even more complex if the static inputs are unacceptable for the
models used in advanced SOR. In that case, input flows should be coordinated with the start of evaluation
cycles. Particular branches of model code might work only when particular inputs come in a pre-defined
order. Events close to each other timing-wise can change time-order in a multi-processor and especially in
a distributed environment. The test tool should provide the means to simulate the required behavior and
ensure that a particular branch is working.

1.12 Precision of Latency Measurements

It is necessary to take into account all components affecting delays within the SOR system, in particular
networks and firewalls, transport protocols and application level latency. Apart from challenges common to
most trading platforms, additional problems could be pointed out that are caused by the complex behavior
of algorithms and difficulties related to tracking the relationships between parent and child orders. This can
be done by using information obtained from system logs or network sniffing.

1.13 Real-Time Data Volumes

The capacity of the test tools should not be inferior to the capacity of the system under test. In particular,
one needs to simulate tens of thousands updates per second and still be able to analyze system’s behavior.
Not only real-time performance is of importance, but also the analysis of regulatory reporting generated by
SOR, such as SEC Rule 606 (former Rule 11Ac1-6) Disclosure of Order Execution and Routing Practices for
Non-Directed Orders, OATS, OTS, MiFID, etc. This means that the test tools should be capable of processing
of a considerable amount of information that might be hosted on less scalable hardware than the SOR
itself.

1.14 Environment Maintenance

Advanced SOR is usually a highly customizable solution deployed across multiple servers and connected to
various feeds and databases. Deployment, upgrading, monitoring and configuration management of the
test environment may require significant effort by the Quality Assurance team. The test system in some
respects can be even more complex than production, as it includes client order generation and exchange
simulation facilities. Testing might also require changes in static data and adaptive databases that differ
from those that take place in production.

Allied Testing | Advanced SOR Testing

2. ADVANCED TESTING TOOLS

2.1 Test Harness Requirements

Automated testing of a distributed trading backend present in most SORs and advanced execution
platforms can only be performed by an enhanced Test Harness solution. Such a testing tool must allow
interaction with the components inside the system via different network connections and APls.

In this section, we outline the requirements for executing end-to-end functional and non-functional tests.

The Test Harness needs to possess the trading framework that allows simulating inbound
orders/cancellations and amending the flow via multiple connections, outbound executions flow, market
data recording and replay, clearing and settlement connectivity.

The Test Harness needs to incorporate a complex events processing engine and support multiple trading
(FIX, FAST, Fidessa, SSL, etc.) and network (TCP/IP, UDP, Multicast, HTTP(S), SOA, Tibco RV/EMS, Message
Queues) protocols out of the box. It should be expandable in order to satisfy requirements to cover more
protocols.

In addition to client and server simulation, the tool needs to provide powerful monitoring and the ability to
drill down to particular captured messages.

The frameworks within the Test Harness need to support logs processing and standard application servers
monitoring.

Remote environment management can reduce the load on quality assurance staff during test execution.

The engineers need the ability to write script test scenarios using a commonly distributed programming
language: VB, Java, C#, Perl, TCL, Python, etc.

Extensive test library should support the following:

» Managing connections to the system;

» Running multithreaded algorithms controlling different event flows between the Test Harness and
system under tests;

» Logging events and measurements and collecting statistics.

The Test Harness also needs to have a flexible reporting subsystem allowing report generation in MS Excel
or other format.

Our experience shows that the following features are extremely useful for functional testing of the SOR
systems:

» The ability to develop test scenarios consisting of test cases;

> The ability to record real environment behaviour and create test actions reproducing observed
events;

» The ability to articulate test cases as sets of actions described in Excel spreadsheets (such scripts
can be reviewed and maintained by business users and analysts);

Allied Testing | Advanced SOR Testing

>
>

The ability to control the entire test environment from a single script;
Integration with one of Ul testing tools.

For performance testing, the following features in a Test Harness are essential:

2.2

>

A\ 4

The ability to emulate the load caused by a number of different virtual algorithms hitting the
system simultaneously;

The ability to pump pre-recorded message flow into several network connections (either client or
server);

Server simulation capable of processing high volumes of incoming requests;

A reporting subsystem allowing for the analysis of network capture/server logs and generating
consistent and clear reports within a reasonable amount of time.

Exchange Simulator

Exchange simulator is a tool whose behavior approximates that of a real exchange to the maximum degree.

It accepts all types of requests supported by a specified exchange and acts as an order book according to

corresponding rules. The Simulator completely supports all trading phases applicable for a market, such as

opening/closing auctions, etc.

The simulator accepts order requests and provides exchange responses via a standard order management
link, such as FIX. It also publishes the order book state and other parameters via the Market Data feed.

As a testing solution, the simulator also provides the ability to control the market simulated during a test.

The following are the features for controlling the simulated order book:

>

Historical prices. This standard feature is used to replay historical prices by generating artificial
events and populating order book according to previously recorded historical or artificial market
data.

Managing market impact. All external orders are going to the same order book and therefore
moving it away from its historical state. An external market driver constantly monitors the order
book; if the book significantly differs from its historical state, the driver generates a counter flow of
artificial requests in order to compensate the external impact and move the market back to its
historical state. The market driver can also be used to simulate a complex market behavior or a real
market impact. The latter is useful for behavioral testing of complex trading algorithms.

Simulating predefined market conditions. The market state is controllable for the external
applications, such as test scripts or test harnesses. The simulator accepts requests to setup the
order book to a specified state. This is needed for building a controlled Exchange Simulation
environment for functional tests, which verify the system’s behavior under specific market
conditions.

A very important requirement for a Simulator used in the testing of a SOR system in a fragmented market is

the ability to concurrently simulate many different instruments across different exchanges. It is crucial to

have a synchronized simulation of multiple different markets and have the ability to control them from a

single test scenario. In addition, different markets may introduce different latencies for requests and

Allied Testing | Advanced SOR Testing

10

response delivery. Therefore, the Simulator must provide the ability to introduce different delays for
different markets.

Allied Testing | Advanced SOR Testing

3. ADVANCED TESTING STRATEGIES

3.1 Regression Testing

By regression testing we understand executing test scenarios that cover all system functionality in its
entirety. Regression testing is done to verify that no issues were introduced during the implementation of a
new version of the application or during the customization of the system. Regression testing is a standard
technique used to guarantee quality of every complex system. Thoroughness and skill can turn this
approach into an advanced testing strategy. The development of test cases for regression testing requires
an in-depth understanding of the system and the business processes. We recommend that regression
testing start by executing scenarios related to the following:

Bug fixes done in the previous release;
Areas that frequently contained defects in the past;
Areas which have had recent code changes;

YV V VY

Areas that can significantly affect algorithm profitability.

Sufficient code coverage during a regression run can be achieved when the test team:

» Has access to protocol specifications;

» Understands trading system architecture and market model;

> Is familiar with the new/old system requirements and test scripts history;

» Constantly monitors the bug tracking database paying particular attention to defects observed in

production.

A typical SOR regression test suite covers the following areas:

A\ 4

All applications sending orders to Smart Order Router (e.g., web client, thick client, API, etc.);
All SOR modes supported (e.g., fire and forget, continuous re-route, etc.);

All asset classes and security types;

All order sides, types, TIFs, handling instructions;

A certain range of typical order sizes and prices (marketable and non-marketable orders);

V VY VYV

All trading venues, including all public market centers protected under Reg NMS and all dark pools
available (also consider requirements for internalization);
All trading sessions and daily activity patterns for all venues (including trading halts, etc.);
All business rules and routing algorithms, including but not limited to:
0 Routing algorithms for venues priority based on historical database (historical statistics on
trading patterns per symbol and per venue);
0 Routing algorithms for venues priority based on real-time adaptive database;
0 Combination of A and B: Routing algorithms for market centers priority based on historical
probability patterns and real-time adaptive opportunity patterns;
0 Routing behaviors for venues priority based on explicit customer preferences that override
default system settings (customized algorithms such as exclusion of certain venues from
routing choices, limiting max size of child orders, etc.);

Allied Testing | Advanced SOR Testing

0 Liquidity pinging / scanning for hidden liquidity (attempting to interact with invisible/non-
display, iceberg/reserve, discretionary orders)

» New orders, change-cancels (amends), cancels;

> Full fills, partial fills followed by rejects or cancels or posting of the balance of the order on the
venue book, TLTC (Too Late To Cancel) scenarios;

» Order validation and error handling specific to Smart Order Routing;

> Failover and Recovery scenarios, such as handling of disconnects from specific venues or market
data feeds (also consider scenarios for triggering self help rule against a certain market center when
detecting repeated delays in response to incoming orders);

> Regulatory reporting of order traffic generated by Smart Order Router (such as SEC Rule 606
(former Rule 11Ac1-6) Disclosure of Order Execution and Routing Practices for Non-Directed
Orders, OATS, OTS, MiFID);

» Verification of the log files, trade and quote databases to facilitate a comprehensive audit trail and
"compliance snapshots" (the capture of contemporaneous trading and quote information to
substantiate order routing decisions).

It should be noted that the applicability of individual items from the above list is directly related to the
functionality supported by the system under test.

The diagram below shows a generic project flow and the relationship between functional and regression
test execution:

7

12

\ J
Allied Testing | Advanced SOR Testing

13

3.2 Back End Testing
The diagram below shows a simplified schema of a trading system. We will use it to illustrate concepts of
backend testing.

SOR

LSE

Euronext

Turquoise

DarkPools

c
Iy

-+

In the diagram, we have an Order Management System (OMS) responsible for obtaining orders from Web,
Desktop and API clients. Orders are passed to the Smart Order Router (SOR). Child orders generated by SOR
go into the EC (Exchange Connectivity) layer. The system receives MD (Market Data) and C&S (Clearing &
Settlement and Static) data. DB (Database) is used for persistence and regulatory reporting. Admin Ul is
used by the system’s operator to perform various maintenance tasks.

The most common type of testing relies on using available GUls to communicate with the system. Often Ul
Automation tools like HP QTP, Borland SilkTest, Selenium, etc. are used to emulate end user activities.
Although this kind of testing is crucial for any trading system, it has several limitations. The main difficulties
are related to maintaining the state of the system under test and exchange responses. With GUI testing it is
sometimes difficult to pinpoint a component causing a problem or test different servers in isolation. There
are also scalability limitations on the number of scenarios that can be executed from a single workstation
within a given period of time.

Backend testing addresses these issues by “drilling down” into the system’s backend and communicating
with servers on the protocol level.

Allied Testing | Advanced SOR Testing

Test
Harness SOR Test

Harness

Turquoise

DarkPools

Test
Harness

Test
Harmess

Test Harness used for backend testing allows for monitoring communications within the system without
replacing an actual component. Alternatively, it can be used to emulate client order flow and execution
venues. The support of internal protocols allows performing unit testing. The diagram below shows one of
the components (in this case SOR as a whole, but in reality it can be a part of the SOR) surrounded by Test
Harness simulating low level communication:

Test Test
Harness . Harmess
oMS Middleware EC
simulation simulation

SOR

g g

3.3 Performance and Latency Measurements

Obtaining accurate figures for system’s capacity and latency is a complex task that needs to be carefully
planned, prepared and executed. We are not going to cover all aspects of performance testing in this
document, but will rather concentrate on several best practices that benefit SOR testing. These are:

Analyze system requirements and carry out static analysis;
Outline load business model;
Collect monitoring information from several sources;

Y V VYV VY

Invest into monitoring and test results processing;

Allied Testing | Advanced SOR Testing

15

> Use scalable tools for order flow generation and market simulation;
> Ensure that an iterative process is in place.

System requirements should be identified to drive performance testing and optimization processes. Such
requirements need to be critically analyzed to ensure that they are clear, verifiable, realistic, and that they
have business meaning. As they are being captured, the requirements should be separated into those that
are related to spikes and those that are related to sustainable processing. This will help avoid expending
efforts on trying to reach unobtainable targets for systems capacity. It is important to emphasize that, for
SOR systems, latency figures during the spikes are extremely important, as the spikes represent market
movement. For latency measurements, it is recommended that requirements for overall processing and
internal delays are identified, and that the focus is on paths that present the main value for business. For
example: in many cases forward order processing delays are much more critical compared to propagation
of information related to acknowledgements and fills. The diagram below shows various delays measured

P10_sen Sle_recy, ﬁ:_send 2 market

P10 AP } | market

-
- i

for a GL Trade-based system:

h
Y

P12_sen

e recy 2 Marrket

T P15 recy @ ®P15_send
- ¥ —

P15 -_— % | atency measurement

While identifying SOR system requirements, one needs to think in terms of parent and child order
instructions, reference market data intensity, and response per order rate. Child order flow is the most
complex, as order flow generation tools control only parent orders, while child orders generation heavily
depends on the SOR logic.

Static analysis of requirements allows predicting some effects even prior to launching a test, e.g. lack of disk
space for log files will definitely result in system’s unavailability over a period of time. We highly
recommend using static requirements analysis while planning performance testing.

When executing testing for advanced execution platform, one should not concentrate on using only
simplistic scenarios based on sending/amending identical orders. Instead, we recommend identifying the
underlying business model that describes types of participants using the system and their behavior. Some
SOR algorithms may be used more frequently than other, various sizes and constraints might be passed to
various algorithms. Inbound orders flow generator should reflect the heterogeneity of the real world.
Underlying business models simplify the process of communication of the actual executed test scenarios to
the appropriate stakeholder. Ideally, the load model should be customizable, so that its output can be
tuned without modifying the model itself. The comparison of the model output against production log
analysis provides a valuable insight regarding model characteristics.

Allied Testing | Advanced SOR Testing

16

The information related to messages that pass Test

Harness
EC
simulation

through the system can be obtained from various
sources. The diagram on the right shows the main

locations of such information: Network interfaces, '
log files, middleware capture, persistence files and Y
databases. Monitoring tools need to extract Wesuramsnts
lines/packets related to a single message or business b
transaction from various parts of the system, group B
them and compute the aggregated data. We believe cﬂmigﬁam

. Time Synchronization:
that several sources need to be used even if all of 5 b crcs

. L. . . b) test tools
them provide similar information. For example, the) hardware solutions
. Metwork Interfaces
same information can be present in persist files and s
.
network capture, but the reconciliation of the =0
sources can provide extra hints regarding the time Firewalls
required to support persistence and can also
decrease the probability of results processing errors.
+

The effort invested in system monitoring can pay off
not only in test environments. Customizable Test

Harness
Client
simulation

monitoring and results processing can also help
analyze production information (although simulator
logs will not be available in production). Usually, we generate two types of reports. One of them is
automated; it is generated based on the results of a particular test run. The other type aggregates
information from several test runs; the results differ either in terms of the load level or the configuration of
the test environment.

While looking into the roots of the bottlenecks reported by the test tools, one would like to avoid issues
caused by the testing tools themselves as opposed issues caused by the deficiencies of the system under
test. Scalable test tools allow generating required volumes by using available hardware. There have been
instances when we had to use pre-recorded data for incoming message flow generation and simplified
crossing algorithms in exchange simulation. Very often, the most time-consuming step in performance
testing is the processing of test results. Therefore, a fast processing tool can be beneficial for the entire
project.

We are confident that performance testing and optimization should be an iterative process. It should start
at the earliest possible stage, even prior to implementation of a complete business model. Requirements
identified at an early stage of a project should be verified again against the actual test results. It is also
recommended that the testing team always plan for several optimization cycles.

3.4 Reconciliation Testing

As there is a limitless set of possibilities for the paths within advanced SOR, we need to consider
approaches different from those used by scenario-based regression testing. One of the testing approaches
that has proven cost efficient is reconciliation testing.

Allied Testing | Advanced SOR Testing

17

A standard test scenario consists of steps and expected results. In case of a SOR system, test steps will
include:

> Pre-configuring the initial state of SOR;

> Submitting predefined client orders;

» Simulating predefined exchange responses;

» Monitoring the behaviour of the SOR system and verifying orders that it generates/re-routes and
responses to the client.

Reconciliation tests make no assumptions on inbound client order flow or exchange responses. Instead,
they verify data consistency between various points in the system using a set of customizable rules.

Parent Orders and Child Crders and
FIX Logs Executions Executions
A B
—_— — =
—_— o —_—
N i " =
FIX oms
c L
Regulatory
OMS DB Reports

Let’s consider a few simple examples:

» The quantity of executed child orders should match the quantity of executed parent orders (I vs. K)
> Each order and execution must to be stored into the OMS database (A vs. B vs. C)
» Each execution should be reflected in regulatory reports (I vs. J)

All of these rules are very straightforward and easy to check. However, much more complicated scenarios
can be coded. A good example would be verifying aggregate characteristics of generated child orders vs.
the parent order. The complexity and variety of the checks (D vs. E) reflects the complexity of advanced
SOR execution decisions.

We recommend using software developers to implement a reconciliation testing procedure. Still, the
output of the verification should be presented in pass/failed criteria of a test case (accompanied by a
detailed discrepancy report). Boolean test case output should be stored into the same results repository as
the one that is used for ordinary automated tests.

One of the additional benefits of reconciliation testing lies in the fact that the same procedures can be used
in production environment to verify data consistency between components.

Allied Testing | Advanced SOR Testing

18

3.5 Behavioural Testing

In this section we address one of the approaches to testing stochastic systems. Behavioural testing
concentrates on aggregated metrics that reflect the behaviour of a system. We put the advanced router
into various dynamic conditions, execute particular test sequences and calculate the targeted metrics. The
test should be repeated several times to verify the stability of the metrics for the same inputs and the
elasticity towards small fluctuations in inputs:

Replay historical or artificial market data;
Make Exchange Simulators respond according to market conditions being replayed;
Generate a client order or a set of client orders coming into the SOR module;

YV V V V

Analyze the behaviour of the SOR module and assess the algorithm performance in terms of the
average price, latency, fill probability, total commission and other relevant metrics for a single
order or a set of orders.

Successful behavioural testing requires additional sophistication from simulation and inbound order
generation procedures. The execution of child orders should be strongly correlated with the market data
that flows into the system, and market impact and unpredictable market movement simulation are also
essential.

Metrics calculations can rely on information stored by the SOR system for regulatory best-execution
reporting, information obtained from the log files, or even real-time data intercepted using network
capture. Calculations may be performed in Excel or using dedicated software packages.

3.6 Operability Testing

This section discusses an activity that is rarely included within the scope of general quality assurance. The
main goal of operability acceptance testing is to provide confidence to the system’s business owners and
Operations Support that a service/application:

» Isin line with general communications infrastructure within the company;
Is well suited for automated maintenance procedures;

Complies with existing monitoring standards;

Satisfies approved resilience requirements;

Follows existing security requirements;

Corresponds to general technical standards;

YVV Y VVY

Has proven and tested support procedures.

Operability tests provide valuable insight into problems that may appear in production. The presence of QA
personnel responsible for in-depth analysis of maintenance procedures helps other teams to address
problems with test environment stability common to the testing of advanced execution platforms and
other trading systems.

The following is a typical checklist for operability testing:

» Environment Documentation;
» Communication Protocols;

Allied Testing | Advanced SOR Testing

19

Automated software deployment;
Applications start/restart and Maintenance;
Operating systems and Database versions;
Monitoring and Health Checking;
Debugging and Troubleshooting;

Load balancing;

YV VYV VYVYY

Failover procedures.

Each test environment used for the SOR testing preparation or execution should be documented in the
form of environment diagrams, access rules and support responsibilities. Such documentation needs to
cover the output of operability testing and contain short and clear instructions for performing start, stop,
deployment, clean-up, monitoring and log file processing.

4. VENDOR PROFILE: ALLIED TESTING

This section contains a description of Allied Testing tools and practices to provide QA support for advanced
trading solutions.

4.1 AboutUs

Allied Testing is a specialist QA and testing firm with the sole focus on the capital markets, trading and
financial industry. Allied is a global company with offices in the US and the UK and test labs in Eastern
Europe and South America. Since 2000, Allied Testing has been delivering premiere QA solutions and
services to leading global companies, including Thomson Reuters, Barclays Capital, JP Morgan Chase, RI3K,
Equiduct Trading, and others.

The combination of the company’s specialization, experience in testing complex trading systems and
applications, the strong track record with global client base, and offshore/nearshore service delivery
capability makes it a natural choice for QA and testing services to the capital markets and trading industry.

In order to handle complex quality assurance and development projects, Allied Testing has established a set
of strong project management practices based on our prior work experience with leading financial
institutions and our knowledge of such models as CMMi, RUP and MSF.

> Project initiation stage: establish communication, develop a test strategy; plan testing, establish
tracking and reporting channels;

» On-going planning and tracking: weekly conference calls, weekly status reports, transparent cost
planning and budget reporting;

» Deliverables and standards: agreed upon with each Client and adjusted individual Client needs;

Very often the effort required to create a comprehensive testing framework for an advanced execution
platform is underestimated. Due to a large amount and variety of test scenarios, one needs to allocate a
considerable amount of manpower to the task. As a result, the total project cost project becomes quite
significant. Allied Testing addresses that by delivering much of the work remotely, at offshore rates.

Allied Testing | Advanced SOR Testing

20

Normally, clients of testing vendors expect to delegate repetitive, relatively simple and resource intensive
tasks to an offshore provider whose personnel are ready to follow simple instructions. These expectations
raise serious concerns about the offshore vendor’s capability to deliver services for such complex systems
as advanced SOR. Unlike many other vendors, Allied Testing offers quite a different service: we provide
stable, motivated teams of young and dedicated Quality Assurance engineers. Our staff see QA as a long-
term career choice, not as a stepping stone to development or management.

In order to match our Clients’ schedule around the globe, we adjust our office hours so as to guarantee our
European teams’ 100% overlap with Europe, 85% overlap with the US East Coast, 65% overlap with the US
West Coast, and 50% overlap with Australia and Japan. Our South American delivery center can guarantee
100% overlap with any US based client and 80% overlap with Europe.

Sometimes, a trading system is improperly documented; in certain cases the implementation comes ahead
of its documentation. Allied Testing approach to these problems is to provide staff with sound English
language communication skills. They are capable to fill in the gaps and obtain blocks of information from
development and analysts. They can also assist with documentation update according to the actual
implementation of the system, etc.

An advanced SOR system usually contains a tremendous amount of specifics. As a result, knowledge
management becomes a very important activity. We are able to handle it thanks to our low attrition rates,
the availability of backup for key specialists and knowledge preservation practices. Unlike an ordinary
offshore vendor, the core team working on a project at Allied Testing becomes the extension of the Client’s
team.

4.2 BEST (Back-End System Testing) Platform

BEST (back-end systems testing) is a software platform for automated testing of enterprise applications and
distributed server back-ends. It allows testers to develop and run test scripts performing various actions
against servers and validating system response

Our test tool is based on the Eclipse platform and supports all phases of the testing cycle: test recording,
customization, execution and report generation. The test tool provides powerful scripting facilities and the
ability to create script-less scenarios.

BEST provides unique performance testing and reporting features. The tool supports the following
protocols:

> FIX 4.0 -4.4 (client and server);

FAST (client and server);

Reuters RMDS (client and server);

Fidessa OpenAccess (client and server);

GL (the customer must have the corresponding license to use API);
Generic TCP/IP, HTTP, SOAP, SSL;

Message queues Tibco RV/EMS, JMS, IBM MQ;

.NET Remoting (through a special agent);

YV V VYV VY

A\

Integration with Mercury QTP to manipulate user interface;

Allied Testing | Advanced SOR Testing

> Database connectivity. KDB (server and client), JDBC;

» Custom/additional interface can be added within 2-4 weeks if required.

© BEST Studio - Running \recordFIX\Default

Ele Edb Mavigate Source Refactor Window Help
e =1
W soripts Explorer 2

1% seripts
= i MewScript03 [Data preparation]
3 Run configurations
% Default
&2 Java sources
[E] Mewscriptn3. java
7 Data fles
[pataPumpConnectionDetails.csv
DataPuMEDistribution. csv
DataPumpMessageDetsils.csv
PRl Reports
[20080117-161747,629
20080117-161923,863
1B 20080117-162752.348
[20080117-163040,151
[20080117-163845.613
B [20080117-164302,098
() 20080117-164358, 941

} else if
MessageObject partFill = context.getUoilicy().createMessageChisct ("FIX EXECUTION _REPORT™)

| 4 TestSaipt | (5 Logs [E Metries [E5] Messages

3] emu.java 3] record.jawa 4] RecordedBat. java 4] recordFIx java

/// FILLS - if 500 < gty <= 1000 full fills
/F¢ FILLS - if 1000 < gty < 2000 2x part f£ills
/f¢ FILLS - if 2000 < gry ix part f£ill

int gty = Integer.valueOf (message.getValue ("FIZ_OrderQty™)|:
if (qry <= 500}
else if (goy < 1000 j¢
MessageCbject fullFill = context.getUoility().creaceMessageObject ("FIX_EXECUTION REPORT");

return;

fullFill.secValue ("FIX LastPx", "57);
fullFill.setValue ("FIZ LastQty”, message.getValue ("FIZ OrderOty™)):
fullFill.secValue ("FIEX_hvgPx", "57):
fullFill.secValue ("FIX CunQty”, message.gecValue ("FIZ OrderQoy™):

FixServerictions.sendFullFill (context, conn, message, fullFillj:

(guy < 20008 {

int leavesQty = gqry-1000:

= [scripts

FixTestseript [Generic]

[J Abstract environment:

2 Run configurations
% Default

-1 Java sources

& 7 Data files

1 EE| Reports

- ji] Newscript0i3 [Data preparation]

- i Perfseript [Performance]

- B emu [Emulator]

Fit| perf [Perfarmance]

Eit] record [Recording]

B
Bl
8
e
&
E

‘o
g
E
g

i report [Report generation]
i Best framawark

[System settings

&[] Physical envirorments
-4 Message descriptions

[2] Infrastructure schema

=

S anAene 1T 12447 das =
Seript Log 52 Lk BT H - >
|5eript Ing [recordF1%] 1 Phys_Erv_FIx ¥ Default 1 DataPumpMessageDetails.csy &1 |

Compilacion [recordFIZ] started... =
Compilation succesded. Protocal |FIzsz |
Note: Some input files use or overrid | message: |FIx_NEW_ORDER_SINGLE 3
Mote: Recompile with -Elint:deprecati 5
|Hote: Some input files use unchecked Tagld Tag Name Tag Valuz e
Mote: Recompile with -Xlinc:unchecked 8 FIX_BeginString o~
E a 9 FI¥_BodyLength ~
®ecucion starced.. . 1 FIX Account Account
123:05:17: 667 | Test recordfIZ s 1 FIX_Accountz &
[} FIX_AvgPx ~
11 FIx_ClordiD AdvIncrement("§OrderBases_{0}",1000,1)
14 FIX_Cumty ~ v
[evailable Functions:
Increment - Incrementint starting¥alue, int incremenkStep)
AdvIncrement - ddvIncrement(String text, int starting¥alue, int incrementStep)
Timestamp - Timestamp(String dateTimeFormat)
Random_i - Random_i(int minValuelnclusive, int max¥alueExdusive)
Random_d - Random_d¢dovble minValuelnclusive, double maxValusExclusive)
DataFromFie - DataFromFike(String columniame, WorkModes workMode)
GetStrptParameter - GEtSorip ring
< | >
Writable: SmartInsert | 6819
=
© BEST Studio 3
Fie Edt Window Help
52 B 4 Test Script Logs | O Metrics [] Messages
¥ Scripts Explarer 57 NER|® =0 Seript Log 5 @Bl T O

| Seript log [FixTestseript]
SRS

23:18:50:999 | Setting Market Emulator Mode: ack|0|%60|_0]0[340|_0|0

23:15:51:140 | Retion #1. Instruct emulator to issue part fill and full fill - passed
23:18:51:171 | Aetion #2. Send new order - passed

23:18:51:405 | Action #3. Validate ack — passed

23:18:51:733 | Retion #4. Validate £ill - passed

23:19:22:359
23:19:22:359
23:19:22:359
23:19:22:359
23:19:22:359
23:19:22:359
23:19:22:359
23:19:22:359
23:19:22:359
23:19:22:359
23:19:22:359
— | 23:19:22:359
23:19:22:359

Following similair messages caught:

Difference:
Tag | In filter | In message
FIX_Lastoty| 50| Absent
FIX_CrdStatus|1|0

Difference:
Tag | In filter |
FIX LastQty| 80| 120

In message

v

“l23:19:22:359 | Message: 8=FIX.4.209=270035=601=ABCDEFGHJKLMIG=9.99011=3006014=200017=300
= 5|23:19:22:359 | Difference:
3:19:22:359 | Tag | In filter | In message

2
Show Cases [autoscrol | 25, 90:22:950

FIX CrdStatus|1]2

TestCase

TestCase #1, Logon

TestCase #2.Full fil

TestCase #3.Full fil @ specfic price

TestCase #4.Part Fill with specific volume
TestCase #5.Two part fils with specific volume
T #

TestCase #7.Limit Order conversion carrectness
TestCase #8.Market Order conwersion corvectness

S

Descriptian

Result
passed
passed
passed
passed
passed

passed
Failed

23:19:22:375
23:19:22:422
23:19:22:422
23:19:22:422
23:19:22:422
23:19:22:422
23:19:22:625
23:19:22:719
23:19:22:797
23:19:22:812
23:19:22:812
23:19:22:812
23:19:22:812
23:19:22:859
23:19:23:016
23:19:23:109
23:19:53:267

Action #5. Validate £ill - failed
TestCase #6.Part fill and full £ill - failed

TestCase #7.Limit Order conversion correctness
Setting Market Emulator Mode: ack|0

Revion #1. Instruet ewulator to acknowleds orders - passed
Action #2. Send new order - passed

Retion #3. Validate GL Order — pasaed

TestCase #7.Limit Order conversion correctness — passed

TestCase #8.Market Order conversion correctness
Setting Market Emulator Mode: ack|0
Letvion #1.
Action #2. Send new order - passed
Following similair messages caught:

(3

£ |

21

Hessage: §=FIX.4.209=252035-801=ABCDEFGHIKLIOG=0011=3006014=017=300620050

Message: 8=FIX.4.209=272035=801=ABCDEFGHIELNOG6=S.99011=3006014=120017=300

Instruct emulator toto acknowlede orders — passed

Allied Testing | Advanced SOR Testing

22

4.3 Exchange Simulator

Allied Testing offers the Exchange Simulator product that helps algo, stat-arb and other systems-based
traders test their intraday trading algorithms and strategies. It provides a convenient way of running and re-
running strategies, using historical market data.

The Exchange Simulator reproduces all phases of exchange trading and forms a complete order book that
behaves according to a full set of market rules. We convert historical market data into a constant flow of

IM

order submissions, amendments and cancellations, which are placed into the order book. All “user” or

Ill

“external” orders are placed into a simulated book and processed according to the same exchange rules.

A comprehensive Market Model module constantly analyses the order book parameters and produces
artificial events to simulate market responses to event flows generated by external users.

Exchange Simulator provides the following external interfaces:

» AUl for simulation management, locally or remotely;

A remote API for simulation management from external applications;

A trading interface (FIX 4.x or GL, custom protocol can be added);

A Market Data interface (Reuters RMDS, custom protocol can be added);

YV V V V

An Excel plug-in, which allows applying simulator developing strategies in MS Excel VBA; no need to
integrate;

A\

Historical prices can be consumed in CSV format, Level 1, Level 2 or complete order audit trail data
could be refined by our parsers.

The following markets are supported by the Exchange Simulator:

» LSE (SETS)
EuroNext
Xetra
OMX
Milan
Madrid

VVV VY

If requested, additional Exchanges/Markets or Dark Pools can be added within 2-4 weeks per execution
venue.

4.4 Performance Analyzer

Performance Analyzer Tool (PAT) is a tool for real-time monitoring of trading performance. It listens to all
SOR actions (order submissions, modifications, and cancellations) and exchanges notifications (acceptance
or rejection of orders, execution notifications, etc). By comparing the parameters to current market data
and benchmark values, it computes a number of metrics that characterize various aspects of trading
performance:

» System metrics showing low-level performance of the trading client application: network delays,
computation times, etc;

Allied Testing | Advanced SOR Testing

23

> Trade style metrics highlighting the particularities of the trader’s (or algorithm’s) trading style:
aggressiveness, price prediction quality, etc;

» Profit and loss metrics showing how various factors contribute to the net result of trading
compared to a chosen benchmark.

The metrics are displayed in a versatile, easily customizable grid interface with powerful grouping and
sorting capabilities providing aggregate values and drill-downs to individual transactions.

PAT is meant to compliment the Simulator: it provides efficiency analysis of execution algorithms tested
against the simulated data.

Eile Yisw Copnsetisn Halp

Distonaect 2

[Prafit 85 Loss / Order 1d = 25

Ecliantcraerld: I8 Ordecld: 25 D
|Exchange: PARISSTOCKEXCHANGE | [p,
|Stock: ACA Order Cirection: Sell B I) . T Paase | rnosh o)
(Ordee Type: Limit Sgesinr: algoritn2 || & Bt | Guebly | Guonby () | Aowessiveness | Siposs e || DR bkl
el 2850 seee.2n7 2050 4% 0% $106 $195.127 -1.00 0.00
|Final Status; Parbally Filled Volume: 1000 [|s200 $86,575 [0% 0%) 50 -1.00 0.00
|Exscuted Valume: 450 | 100 518082 [(3 100% o 56 -1.00 .00
| Executed Amounl: $45.437 | 1500 527,145 1 0% 100% 20 S0 -1.00 0.00
i iy | oo 18,030 0 0% 100% 0 0 .00 0.00
(Remaming St [1300 23,558 0 0% 100% €0 s0| 100 0.00]
|Remaining Quenlity (*): 55% [13300 $372.27 0 0% 0% 0 $0 -1.00 0.00
|Spresd Eamed: $45.857 [7050 s282.160 2400 25% 100% 50 30 -1.00 0.00,
|Spread Paid $0
|Spread CostProft $45.887
| ctive Fill Peobability: 0%
|Stock PL $45.887 = Lo
| Benchmar: performance: ~1019700 z =
loseL 30 ‘DatoRowlist | Clicrt Orderld s
CaRewndist 5 llems DataReowdist: 22 lbeens
I ; = [I T ==
| Trensacion type Serd Time (b4 Icnmmruerldu Order Id Exchange | Stock | Order Divection | Order Type | Agoriten | =<t || Einal Stany
| Subeniazien MRS LI | [T |— PARISSTOCKEXCHANGE BN Buy Market algerihm1 300000 FullyFi
| Achngudegament omweessoatol [T 3 |- PARISSTOCKEXCHANGE ACA Sell Limit algoritn? 100000 Partially Fi
| Fillcerfrmesen 0110172006 03:00 [218 5 PARIS STOCK EXCHANGE AR sdl Limit algorithm 2 00000 Partizlly Fi
| FillCerfinmation Oifizo0s el) 218 28 FARIS STOCK EXCHANGE MCA(Sal Limit algarithm 2 100000 Fartially Fi
| FillCenfirmation it | e % FARIS STOCK EXCHANGE AR Sal Limit slganithm 100060 Partially 7
@ 8 37 PARIS STOCK EXCHANGE ACh|Sall Limit slgorithm 2 100060 Partially Fi
¥ 218 23 PARIS STOCK EXCHANGE ACA Sl Limit algorithm 2 00000 Parlially Fi
[218 W FARIS STOCK EXCHANGE MA [Sal Limit algorithm 2 WH0. FullyFi
BEE 1= AMSTERDAM STOCKEXCHA NLSBT Buy Limit algoritend 330000 Partially Fil
[[+ 1770 - AMSTERDAM STOCK EXCHA | NLACO Sell Limit algorithmd 700000 Fully Fil
£ |s:
< [Syctam Pasfarmance Profit & Loss

Allied Testing | Advanced SOR Testing

	INTRODUCTION
	1. SOR TESTING CHALLENGES
	1.1 Client order flow
	1.2 Static Data
	1.3 Exchange Simulation
	1.4 Diversity of Markets
	1.5 Impact of Reference Markets
	1.6 FX Feeds Simulation
	1.7 The Universe of Testing Scenarios
	1.8 Quest for Hidden Liquidity
	1.9 Reliance on the Adaptive Database
	1.10 Stochastic Behavior
	1.11 End-Points Synchronization
	1.12 Precision of Latency Measurements
	1.13 Real-Time Data Volumes
	1.14 Environment Maintenance

	2. ADVANCED TESTING TOOLS
	Test Harness Requirements
	2.2 Exchange Simulator

	3. ADVANCED TESTING STRATEGIES
	Regression Testing
	3.2 Back End Testing
	3.3 Performance and Latency Measurements
	3.4 Reconciliation Testing
	3.5 Behavioural Testing
	3.6 Operability Testing

	4. VENDOR PROFILE: ALLIED TESTING
	About Us
	4.2 BEST (Back-End System Testing) Platform
	4.3 Exchange Simulator
	4.4 Performance Analyzer

